There is a deep relationship between being able to solve a differential equation and its symmetries. Much of the theory of second order linear differential equations is really the theory of infinite dimensional linear algebra. In particular Sturm-Liouville theory is the diagonalization of an infinite dimensional Hermitian operator. However there are deeper relationships, as Miller points out in “Lie theory and special functions”; the relationships between special functions such as Rodrigues’ formulae are related to the Lie algebra and symmetries of the system. Even better in some cases the solutions can be found almost entirely algebraically. Some examples from physics come from the Simple Harmonic Oscillator, the theory of Angular Momentum and the Kepler Problem (using the Laplace Runge Lenz vector). The rest of this article will be devoted to exploring a special case of these relations the Quantum Simple Harmonic Oscillator.

Continue reading →